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Regression models that are useful for the explanation and prediction of autoignition temperatures of diverse
compounds were provided by a quantitative structure–property relationships study (QSPR).

Genetic functional approximation was used to find the best multiple linear regression within 72 molecular
descriptors. After validation by correlation of the prediction set, nine descriptor models were evaluated in the
best model. The nine descriptors were Ial, Ike, radius of gyration, 1χv, SC-2, the Balaban index JX, density,
Kappa-3-AM and Jurs-FNSA-2, and information of structure features and their interactions was provide.

The result of the best regression model showed that the square of the correlation coefficient (R2) for the
autoignition temperature of the 157-member training set was 0.920, and the root mean square error (RMSE)
was 25.876. The R2 of AIT for a 43-member prediction set was 0.910, and the RMSE was 28.968.

Introduction
Autoignition temperature (AIT) is the lowest temperature at
which a material generates heat automatically without an
external ignition source, reaching ignition and combustion by
accumulated heat. Since autoignition occurs in air without the
presence of an ignition source, it is an important fire safety
parameter of combustible materials. Autoignition is also
related to the phenomenon of engine knock.1,2 The octane
number of a fuel is a measure of how readily knocking occurs
and depends on the chemical nature of the fuel.

The origins of the automatic generation of heat can be the
decomposition, oxidation, absorption or polymerization of
a material. Usually, the aforementioned chemical processes
occur in oxidative materials or unsaturated compounds. AIT is
generally accelerated by high temperatures and humidity in the
air. The autoignition mechanism proceeds by a free radical
reaction and the stability of the free radical intermediates
determines the ease of oxidation. For aliphatic hydrocarbons,
this stability follows the pattern, tertiary > secondary > primary
> methyl radical, i.e. the more branches there are, the more
stable molecule.3 In addition, the position of the branch is
important. As the number of the methylene of the branch
increases, so does the AIT. The structural features that affect
the temperature of autoignition are the chain length, addition
of methyl groups, the degree of unsaturation, the degree of
branching, aromaticity and the functional groups of a
compound.

Experimentally determined values of AIT depend on the
methods (such as size and shape of containers and method of
heating) 4–8 and different ignition temperatures of the same
substance have been reported by different laboratories.

Several studies have been performed to describe the relation-
ship between AIT and structure,9–13 since autoignition is a

† Electronic supplementary information (ESI) available: descriptors
involved in the best models derived for AIT. See http://www.rsc.org/
suppdata/p2/b2/b207203c/

physicochemical phenomenon that is closely related to molecu-
lar structure and physical properties. Several studies applied the
use of physical properties such as the critical pressure of the gas
and parachor (defined by the equation PA = Γ1/4 M/(D � d ),
where PA is parachor, M is molecular weight, D is density of
liquid state, d is vapour density and Γ is the surface tension).9–11

Using a quantitative structure–property relationship(QSPR)
study with calculated molecular descriptors has advantages that
it decreases experimental costs and eliminates any danger
involved in the experiment. Several kinds of QSPR models for
AIT prediction were developed using multiple linear regressions
and computational neural networks with calculated molecular
descriptors.12,13

The purpose of this study is to obtain informative descriptors
that can describe AIT for all hydrocarbons and compounds
containing heteroatoms, and to develop a QSPR model which
calculates the AIT using descriptors without grouping accord-
ing to compound.

Computation

A Database construction

In this study, 200 compounds summarized in Tables 3and 4,
were introduced for the QSPR study of molecular properties
and AIT. 92 molecules are hydrocarbons; 26 alkanes, 16
alkenes, 20 cycloalkanes, 3 cycloalkenes and 27 aromatic
hydrocarbons.

A subset of 157 of the original 200 structures was selected at
random as a training set, and was composed of 70 hydro-
carbon compounds and 87 heteroatom containing compounds
(Table 3). The remaining 43 prediction set contains 22 hydro-
carbon compounds and 21 heteroatom containing compounds
(Table 4).

The AIT of the hydrocarbons ranged from 201 to 540 �C.
The remaining 108 molecules were heteroatom containing
compounds; 33 alcohols/phenols, 13 organic acids, 33 esters,
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Table 1 The best QSPR equation using 4–12 descriptors and their regression statistics in the training and prediction set a

No. of
descriptor Descriptors

Training set Prediction set

R2 RMSE R2 RMSE

4 Ial, RoG, 1χv, SC-2 0.871 32.867 0.908 (0.918) 26.837 (25.557)
5 Ial, RoG, 1χv, SC-2, Jurs-FPSA-3 0.888 30.577 0.904 (0.916) 28.270 (26.699)
6 Ial, Ike, RoG, 1χv, SC-2, density 0.898 29.448 0.903 (0.919) 28.556 (26.362)
7 Ial, Ike, RoG, 1χv, SC-2, density, JX 0.908 27.793 0.898 (0.917) 30.224 (27.315)
8 Ial, Ike, RoG, 1χv, SC-2, density, JX, Jurs-FNSA-2 0.916 26.578 0.906 (0.928) 29.264 (25.843)
9 Ial, Ike, RoG, 1χv, SC-2, density, JX, Jurs-FNSA-2, Kappa-3-AM 0.920 25.876 0.910 (0.932) 28.968 (25.212)

10 Ial, Ike, RoG, 1χv, SC-2, density, JX, Jurs-RPCS, MolRef, Jurs-DPSA-3 0.922 25.462 0.899 (0.923) 30.711 (27.004)
11 Ial, Ike, RoG, 1χv, SC-2, density, JX, Jurs-RPCS, MolRef, Jurs-DPSA-3,

Kappa-3-AM
0.925 25.002 0.903 (0928) 30.254 (26.189)

12 Ial, Ike, RoG, 0χv, SC-2, Kappa-2, JX, Jurs-FNSA-2, Kappa-2-AM, Vm,
Rotlbonds, Area

0.928 24.388 0.896 (0.904) 28.911 (28.060)

a R2: squared coefficient of correlation; RMSE: root mean square error. Values in brackets are statistic values of the prediction set without butane. 

8 amines, 6 aldehydes, 5 ethers, 7 ketones and 3 halogenated,
and the AIT of these compounds lie between 187 and 590 �C.
The conformations of the molecules having energetically stable
potential energy were determined by energy minimization with
Merck Molecular Force Field (MMFF).14

B Calculation of molecular descriptors

For computation of all 72 molecular descriptors, we used
the Cerius 2 v.4.6 molecular modeling software from Accelrys
Inc. (San Diego, CA). These descriptors were grouped into six
categories: topological, electronic, spatial, electrostatic, thermo-
dynamic, and structural descriptors. Firstly, the topological
descriptors, such as the Wiener index,15 Balaban index,16

Randic indices 17 and Kier–Hall indices,18 were introduced to
describe the degree of branching of a molecule.

Secondly, the sum of atomic polarizability, dipole moment,
highest occupied molecular orbital HOMO energy, and lowest
unoccupied molecular orbital LUMO energy of a molecule,
obtained by semi-empirical AM1 single point calculation, were
used for electronic descriptors.

Thirdly, the radius of gyration, density and volume descrip-
tors were used as the spatial descriptors.

Fourthly, charged partial surface area (CPSA) descriptors
were proposed for electrostatic descriptors as in Jurs et al.19 The
set of 30 CPSA descriptors was calculated as a combination of
the contributions of atomic partial charges and the total
molecular solvent-accessible surface area.

Fifthly, thermodynamic descriptors (i.e., AlogP,20 hydration
free energy and 1-octanol solvation free energy) were
introduced to describe the degree of interaction with the
environment.

Finally, the structural descriptors such as molecular weight,
number of rotational bonds, functional group indicator
descriptors, number of hydrogen bond acceptors and hydrogen
bond donors, were included to illustrate the influence of the
shape and structural features of a molecule on AIT.

C Determination of the optimum descriptor set and description
of the AIT by multiple linear regression

Genetic functional approximation (GFA), based on evolu-
tionary principles, offers a means of exploring descriptor
combinations nonexhaustively but with a good chance of
finding effective combinations. GFA works with a population
of individuals, each of whom is a candidate solution to the
problem. These individuals mate with each other, mutate,
crossover, reproduce and evolve through successive generations
towards an optimum solution. Using the GFA software in the
Cerius 2 and beginning with a population of 5000 initial
equations, 300 000 generation of equations were sufficient to
achieve convergence. We controlled the number of descriptors
in initial equation to a set between 4–12.

The most commonly quoted statistic used to describe the
fitness of data for a regression model is the square of the
correlation coefficient (R2) and the root mean square error
(RMSE).

where i represents ith molecule, n is the number of compounds,
and AITobs

i , AITpre
i  and AIT  symbolize observed, predicted and

average value of the AIT, respectively.
All statistical analyses of the best equations obtained by

GFA was performed using the SAS JMP package (V.3.2.5, SAS
Institute Inc, Cary, NC, USA).

Results and discussion
Genetic functional approximation (GFA) was used to select the
descriptors for the best model and the quality thereof was
determined by examining root mean square error (RMSE) and
the square of the correlation coefficient (R2) for the training
and prediction. The results of the best QSPR models using 4–12
descriptors are given in Table 1 and the descriptors in these
models are summarized in Table 2.

The most common descriptors of these models using 4–12
descriptors are Ial, radius of gyration (RoG), 1χv and SC-2,
indicating that these descriptors are the most significant
descriptors in AIT prediction.

Among these models, four-descriptor and nine-descriptor
models show high stability for the regression equation owing to
high R2 values of the prediction set.

where n = 157, R2
training = 0.871, F = 256.75, RMSE = 32.867,

R2
cv = 0.865, n = 43, R2

prediction = 0.908, RMSE = 26.837.

(1)

(2)

AIT = 410.326 � 132.94(Ial) �
62.348(RoG) � 148.211(1χv) � 32.3665(SC-2) (3)

AIT = 147.606 � 134.152(Ial) � 57.0323(Ike) �
86.2026(RoG) � 140.845(1χv) � 27.8304(SC-2) �

200.084(density) � 28.3369(JX) �
4.55002(Kappa-3-AM) � 66.811(Jurs-FNSA-2) (4)
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Table 2 Descriptors involved in the best models derived for AIT

Label Type Definition

SC-2 Topological Number of pairs with connected edges
Kappa-1  First order Kier’s shape index
Kappa-2  Second order Kier’s shape index
Kappa-3-AM  Third order Kier’s alpha-modified shape index
JX  Balaban index
0χv  Zero order valence connectivity index
1χv  First order valence connectivity index
Density Spatial Density
RoG  Radius of gyration
Area  Molecular surface area
Vm  Molecular volume
Jurs-RPCS Electrostatic Relative positive charged surface area
Jurs-FNSA-2  Fractional total charge weighted partial negative surface area
Jurs-FPSA-3  Fractional atomic charge weighted partial positive surface area
Jurs-DPSA-3  Difference in atomic charge weighted partial surface area
Ial Structural Aldehyde group indicator
Ike  Ketone group indicator
Rotbonds  Number of rotatable bonds

where n = 157, R2
training = 0.920, F = 187.88, RMSE = 25.876,

R2
cv = 0.909, n = 43, R2

prediction = 0.910, RMSE = 28.968.
Butane was a common outlier in these models, having a large

difference between calculated and experimental AIT for the
prediction set (Fig. 1). This compound may not have been

modeled well as it has the lowest molecular weight in the entire
data set. Excluding butane, the remaining prediction set of 42
compounds has an R2 of 0.932 and RMSE (root mean square
error) of 25.212 by the nine-descriptor model. The experi-
mental error in AIT is estimated to be ±30 �C. For a good
model, training and prediction errors should be similar to each
other and close to the experimental error.9,10

Therefore, we concluded that a nine-descriptor model
(eqn. (4)) could be considered a stable final model. Table 3 and 4
show the calculated and the experimental AIT values for
the 157 training set and the 43 prediction set using the
nine-descriptor model and these data are plotted in Fig. 1. The
correlation matrix (Table 5) demonstrates that the descriptors
involved in the nine-descriptor model are not mutually inter-
related by correlation, so this model is of relevance.

The statistic results of the nine-descriptor model for the
entire data set of 200 compounds are given in Table 6. The

Fig. 1 Experimental versus predicted AIT values of a MLR selected
nine-descriptor model.

important descriptor parameters are indicated by the sign and
magnitude of the t-test statistics in Table 6.

The most significant descriptors in the nine-descriptor model
are topological indices such as 1χv and SC-2. 1χv is a direct
representation of the molecular structure that encodes the
various degrees of skeletal branching. The number of second
order subgraphs (SC-2) in a molecular graph is the number of
pairs with connected edges. These descriptors as quantifiers of
molecular branching within a short ranges of 1–2 order also
show the importance of the molecular shape in determining
AIT.

Some topological descriptors correlate with AIT in the
nine-descriptor model. The Balaban index,17 JX, is based on a
Randic formula,18 replacing vertex degrees by average distance
sums. JX reflects the relative connectivity and effective size of
the carbon chain to which multiple methyl groups are attached.
The more the number of methyl groups increases, the higher the
AIT value. Therefore, the AIT value has a linear relationship
with the Balaban index JX. The octane number of alkanes
depends mainly on branching. The Kappa-3-AM descriptor 19

(i.e., Kier alpha modified shape index based on the three-bond
paths in the molecules) is an index that encodes information
about the centrality of branching.

The descriptors Ial and Ike, indicating the aldehyde and
ketone groups, were assigned values of 1 for molecules with
these functional groups, while other compounds were assigned
the value 0. The negative regression coefficient for Ial and
positive regression coefficient for Ike in Table 6 reflect the fact
that relative stable ketone compounds have higher AITs and
unstable aldehydes have lower AITs.12 Jurs et al.11 developed
predictive models of AIT and classified them into several
groups, e.g. hydrocarbon, halohydrocarbons, and compounds
containing oxygen, sulfur and nitrogen, based on multiple
linear regressions and computational neural networks. How-
ever, we tried to discriminate between the aldehydes, ketones
and the other groups using Ial and Ike, and developed a model
for the entire data set without dividing the data set.

The radius of gyration is defined as the largest radius that
the primary axis can sweep out upon rotation. The positive
regression coefficient of this descriptor in these models reflects
the fact that structures with extended conformation have higher
AITs than those with wrapped conformation in the case of
isomeric compounds having the same number of carbons.

Density is defined as the ratio of molecular weight to
molecular volume. It reflects the types of atoms and how
tightly they are packed in a molecule.

When the number of carbons are the same, the AIT
increases as unsaturated bonds or the number of aromatic
rings increases. In other words, the compounds containing
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Table 3 Comparison of AIT values between the experimental values of 70 hydrocarbon compounds and 87 compounds containing heteroatom in a
training set and the predicted AIT values obtained using 9 descriptors

No. Structure name AITexp/�C AITpre/�C

Hydrocarbon

1 Pentane 265 274.8
2 Heptane 213 248.6
3 Nonane 205 217.8
4 Decane 201 203.8
5 2-Methylpentane 264 294.8
6 2-Methyloctane 227 246.8
7 3-Methyloctane 228 246.3
8 4-Methyloctane 232 244.7
9 2-Methylnonane 214 231.6

10 4-Ethyloctane 237 205.0
11 2,2-Dimethylbutane 405 375.2
12 2,3-Dimethylpentane 338 318.6
13 2,3-Dimethylbutane 396 342.5
14 3,3-Dimethylheptane 330 317.9
15 2,2,3-Trimethylbutane 412 409.8
16 2,3,3-Trimethylpentane 430 382.2
17 2,2,4-Trimethylpentane 418 367.2
18 2,3,3,4-Tetramethylpentane 437 396.7
19 2,2,3,3-Tetramethylpentane 430 439.6
20 1-Pentene 290 326.4
21 1-Hexene 265 306.6
22 1-Octene 250 270.5
23 1-Decene 244 236.5
24 2-Methyl-1-pentene 306 346.4
25 2,3-Dimethyl-2-butene 407 435.2
26 2,4,4-Trimethyl-1-pentene 420 416.7
27 2,3-Dimethyl-1-butene 369 402.7
28 2-Ethyl-1-butene 324 348.3
29 3-Methyl-1-butene 374 373.2
30 4-Methyl-1-pentene 304 343.3
31 1,3-Hexadiene 320 378.8
32 2-Methylpropene 464 421.3
33 Cyclohexane 320 279.1
34 Cyclopentane 260 310.0
35 Methylcyclohexane 258 298.7
36 Ethylcyclohexane 238 269.5
37 1,3-Dimethylcyclohexane 306 314.3
38 1,4-Dimethylcyclohexane 304 318.5
39 Isobutylcyclohexane 274 262.5
40 tert-Butylcyclohexane 342 331.1
41 4-Isopropyl-1-methylcyclohexane 306 290.3
42 n-Hexylcyclopentane 228 226.0
43 Butylcyclohexane 246 231.0
44 Propylcyclopentane 269 282.0
45 1,3,5-Trimethylcyclohexane 314 325.1
46 Decalin 268 281.1
47 Cyclopentene 395 367.6
48 1,3-Cyclohexadiene 360 392.0
49 Benzene 498 458.6
50 Toluene 482 475.7
51 Ethylbenzene 432 429.2
52 n-Butylbenzene 412 367.5
53 1,4-Diethylbenzene 430 419.6
54 Biphenyl 540 517.9
55 Naphthalene 540 537.4
56 1-methylnaphtalene 529 540.7
57 1,2,3-Trimethylbenzene 479 496.1
58 1,2,4-Trimethylbenzene 521 505.6
59 1,2-Diethylbenzene 404 389.2
60 1,3-Diethylbenzene 455 411.0
61 tert-Butylbenzene 450 479.6
62 1-Ethylnaphthalene 481 489.7
63 1-Methyl-2-ethylbenzene 448 456.3
64 1-Methyl-4-ethylbenzene 483 435.2
65 Isobutylbenzene 428 399.0
66 Diphenylmethane 486 470.7
67 2-Ethylbiphenyl 449 530.4
68 2-Propylbiphenyl 452 458.9
69 sec-Butylbenzene 418 397.1
70 2-Methylbiphenyl 502 487.1

 

No. Structure name AITexp/�C AITpre/�C

Heteroatom

71 Ethanol 400 363.1
72 1-Propanol 372 335.1
73 2-Butanol 390 364.3
74 tert-Butanol 460 468.6
75 Cyclohexanol 300 337.8
76 Benzylalcohol 436 481.0
77 1-Hexanol 285 288.7
78 1-Octanol 260 255.2
79 Allyl alcohol 370 398.9
80 3,5-Dimethylphenol 555 535.2
81 3-Methyl-1-butanol 340 340.8
82 3-Pentanol 365 348.6
83 4-Heptanol 295 312.3
84 1-Nonanol 260 236.0
85 2,4-Dimethyl-3-pentanol 395 384.2
86 2-Methyl-1-propanol 405 367.3
87 2-Methyl-2-butanol 435 416.0
88 2-Octanol 265 285.5
89 2-Pentanol 343 343.4
90 2-Propanol 399 399.7
91 4-Methyl-2-pentanol 340 354.7
92 2-Ethyl-1,3-hexanediol 360 333.5
93 2-Ethyl-1-hexanol 270 271.2
94 2,2-Dimethyl-1,3-propanediol 400 463.7
95 1-Decanol 250 220.7
96 Ethylene glycol 410 396.1
97 1-Heptanol 275 270.2
98 1,2-Propanediol 421 415.9
99 Glycerol 400 440.6

100 Acetic acid 464 485.8
101 Pentanoic acid 400 375.8
102 Tetradecanoic acid 235 199.2
103 Propionic acid 440 435.0
104 2,2-Diethylpropionoic acid 450 514.7
105 Isopentanoic acid 416 409.8
106 Isobutyric acid 460 455.8
107 Dodecanoic acid 230 225.7
108 Decanoic acid 230 263.8
109 o-Phthalic acid 590 605.3
110 Ethyl formate 435 410.9
111 Isobutyl formate 425 421.9
112 Ethyl acetate 425 441.0
113 Propyl acetate 435 416.7
114 Butyl acetate 380 389.0
115 Isobutyl acetate 420 393.6
116 Methyl propionate 455 458.2
117 Ethyl propionate 445 430.1
118 Methyl butyrate 455 433.8
119 Ethyl benzoate 490 510.2
120 Butyl benzoate 435 453.3
121 Pentyl acetate 375 366.3
122 Ethyl butyrate 440 408.5
123 Phenyl benzoate 560 569.7
124 Isopropyl acetate 425 447.1
125 Isobutyl propionate 435 415.7
126 Isopropyl butyrate 435 415.6
127 Propyl propionate 430 381.5
128 n-Butyl formate 322 415.4
129 sec-Butyl acetate 410 357.9
130 Butyl butyrate 350 369.2
131 Butyl propionate 385 385.1
132 Methyl formate 450 439.0
133 Isopentyl acetate 380 396.6
134 Propyl formate 435 379.1
135 Propyl butyrate 420 390.5
136 Methyl acetate 475 481.6
137 Isopropyl formate 440 416.4
138 Phenyl acetate 585 532.6
139 1,2-Propanediamine 416 388.4
140 Diisopropylamine 316 349.9
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Table 3 (Contd.)

No. Structure name AITexp/�C AITpre/�C

Heteroatom

141 Diethylamine 312 324.4
142 Dimethylamine 400 363.7
143 Propylamine 318 326.9
144 2-Propenal 300 292.0
145 Crotonaldehyde 280 288.2
146 Butyraldehyde 230 206.9
147 2-Ethylcrotonaldehyde 250 272.9
148 Dihexyl ether 187 218.3
149 Dimethyl ether 350 396.9
150 Propylene oxide 455 437.7
151 Cyclohexanone 420 412.3
152 2-Pentanone 452 435.0
153 3-Pentanone 454 449.0
154 Acetone 465 501.2
155 2-Hexanone 423 416.5
156 1,1,1-Trichloroethane 486 478.1
157 Trichloroethylene 420 443.3

Table 4 Comparison of AIT values between the experimental values
of 43 compounds used as the prediction set and the predicted AIT
values obtained using 9 descriptors

No. Structure name AITexp/�C AITpre/�C

Hydrocarbons

158 Butane 372 282.3
159 Octane 220 234.5
160 2,3-Dimethyloctane 231 258.1
161 Hexane 240 264.0
162 Dodecane 203 179.2
163 3-Methylpentane 278 300.9
164 2,2-Dimethylpropane 456 429.8
165 1,5-Hexadiene 345 367.4
166 1-Heptene 263 292.4
167 2,3,3-Trimethyl-1-pentene 383 427.9
168 Ethylcyclopentane 262 303.7
169 sec-Butylcyclohexane 277 251.0
170 n-Propylcyclohexane 248 253.1
171 Bicyclohexyl 256 229.4
172 trans-1,2-Dimethylcyclohexane 304 304.1
173 Isopropylcyclohexane 283 282.1
174 Cyclohexene 310 336.4
175 Isopropylbenzene 424 436.3
176 1,2-Dimethylbenzene 464 483.3
177 1-Methyl-3-ethylbenzene 485 450.5
178 2-Butylbiphenyl 433 414.5
179 1,4-Dimethylbenzene 529 498.4

 

Compounds containing heteroatoms

180 2,2-Dimethyl-1-propanol 420 431.3
181 2-Methyl-1-butanol 385 348.1
182 1-Butanol 340 327.0
183 1-Pentanol 300 307.1
184 Hexanoic acid 330 350.2
185 2-Ethylbutyric acid 390 392.8
186 Butyric acid 445 401.6
187 Isopentyl butyrate 335 374.1
188 Methyl benzoate 510 548.0
189 Isopropyl propionate 425 433.6
190 n-Decyl acetate 215 264.7
191 Dipropylamine 299 294.9
192 Diisopropanolamine 374 397.1
193 2-Diethylaminoethanol 320 320.7
194 Isobutyraldehyde 261 257.9
195 Propionaldehyde 227 223.5
196 Ethylene oxide 429 425.8
197 Methoxybenzene 475 499.3
198 2-Butanone 404 461.7
199 Acetophenone 560 572.9
200 1-Chlorobutane 250 262.6

unsaturation and aromaticity have enhanced radical stability
and autoignition stability. For example, the AIT values of
1-hexene (AIT = 265 �C, density = 0.7837) and cyclohexene
(AIT = 310 �C, density = 0.8595) are higher than those of
hexane (AIT = 240 �C, density = 0.7694) and cyclohexane
(AIT = 260 �C, density = 0.8256). Similarly, the AIT of naphtha-
lene (AIT = 540 �C, density = 1.009) is higher than that of
benzene (AIT = 498 �C, density = 0.9326). The straight-chain
compounds have lower AITs than cyclohydrocarbons, and the
AITs of cyclohydrocarbons are lower than those of aromatic
compounds. Linear compounds have lower density than the
cyclohydrocarbon compounds, and are also smaller than the
aromatic compounds. Density is related to factors such as
unsaturation, aromaticity and linearity of compounds. Accord-
ingly, the value of density shows a positive coefficient in these
equations.

The fractional total atomic charge weighted partial negative
surface area, Jurs-FNSA-2,16 is obtained as the ratio of total
charge weighted partial negative charged surface area (PNSA-
2) to total molecular surface area (TMSA). PNSA-2 is defined
as the product of the summation of the negatively charged
solvent-accessible atomic surface area and that of the indi-
vidual atomic partial negative charge. Owing to a negative
charge value, the value of Jurs-FNSA-2 is negative for the
entire data set. Jurs-FNSA-2 is related to the relative distribu-
tion of negative charged surface area in the molecules. The
absolute values of Jurs-FNSA-2 values for compounds contain-
ing aromatic groups, halogens, acids or esters are larger than
those for the remaining molecules because these contain
negatively charged carbons of aromatic group, halogen and
oxygen.

In order to test the predictive power of the model, the whole
data set was divided into hydrocarbons- and heteroatoms-
containing compounds in both the training and prediction set,
and the results of each subset are given in Table 7. The
predicted AITs of the hydrocarbons in the prediction set were
less successful (R2 = 0.8890, MAE = 26.081 �C), but the results
not including butane, improved to an R2 of 0.9320 and mean
absolute errors (MAE) of 23.052. These results demonstrate
that the nine-descriptor model shows good correlation between
the predicted and experimental AITs, whereas the MAE doesn’t
deviate by more than twenty five degrees.

Conclusion
Quantitative structure–property relationships were used to
predict the autoignition temperatures for a diverse set of 200
compounds. With the genetic functional approximation, the
best model developed was a nine-descriptor model containing
Ial, Ike, radius of gyration, 1χv, SC-2, the Balaban index JX,
Kappa-3-AM and Jurs-FNSA-2 descriptors.

Unlike previously reported models, this model can be
applied to hypothetical compounds without dividing them into
subsets of hydrocarbons and compounds containing hetero-
atoms, or other unverifiable structures such as acid halides or
amides. Not only does this model provide accurate AIT value
for unknown compounds, but also the descriptors in this model
provide information about the structure’s features and their
interactions.

The factors determining the AIT values of molecules are
chain length, addition of methyl groups, unsaturation, branch-
ing, aromaticity, conformation, stability of functional groups
and polar interactions.

The autoignition mechanism proceeds by a free radical
reaction, so more branches which can help to stabilize the
molecules, result in an increase of the AIT. In addition, the AIT
of ring compounds is higher than that of chains, and the AIT
of the aromatic ring observed indeed is higher than the AIT of
the aliphatic ring tested. Four topological descriptors (1χv,
SC-2, the Balaban index JX and Kappa-3-AM) were found to
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Table 5 Correlation matrix of the descriptors involved in the nine-descriptor model a

 1 2 3 4 5 6 7 8 9

1 1.000 0.056 �0.017 �0.083 0.078 0.030 0.013 0.055 0.016
2 0.056 1.000 �0.014 �0.034 0.079 �0.016 0.012 0.028 0.073
3 �0.017 �0.014 1.000 0.117 �0.730 �0.655 �0.142 �0.555 �0.231
4 �0.083 �0.034 0.117 1.000 �0.284 0.106 0.220 0.120 �0.235
5 0.078 0.079 �0.730 �0.284 1.000 0.048 0.037 0.457 0.658
6 0.030 �0.016 �0.655 0.106 0.048 1.000 0.243 0.407 �0.450
7 0.013 0.012 �0.142 0.220 0.037 0.243 1.000 0.711 0.111
8 0.055 0.028 �0.555 0.120 0.457 0.407 0.711 1.000 0.287
9 0.016 0.073 �0.231 �0.235 0.658 �0.450 0.111 0.287 1.000

a 1: Ial, 2: Ike, 3: 1χv, 4: JX, 5: SC-2, 6: RoG, 7: density, 8: Jurs-FNSA-2, 9: Kappa-3-AM. 

Table 6 The QSPR nine-descriptor model for autoignition temperature of a 200 entire data set

 Coefficient Std. error t-Test F-Test Name of the descriptor

0 166.612 31.908 5.22  Intercept
1 �132.442 11.527 �11.49 132.018 Ial

2 47.741 10.496 4.55 20.690 Ike

3 �140.212 6.080 �23.06 531.866 1χv

4 28.026 1.410 19.88 395.035 SC-2
5 83.044 9.010 9.22 84.959 RoG
6 194.170 30.087 6.45 41.648 Density
7 24.789 4.764 5.2 27.074 JX
8 67.861 20.363 3.33 11.106 Jurs-FNSA-2
9 �4.506 1.533 �2.94 8.637 Kappa-3-AM

R2 = 0.9189, F = 239.32, significant level(p)<0.001, RMSE = 26.95, N = 200.

Table 7 Validation of correlation for the nine-descriptor model

Set Group N a R2 b RMSE c MAE(�C) d

Training set Hydrocarbon compounds 70 0.9303 24.270 21.857
 Heteroatoms compounds 87 0.9082 25.225 20.516
Prediction set Hydrocarbon compounds 22 0.8890 (0.9320) 31.399 (25.039) 26.081 (23.052)
 Heteroatoms compounds 21 0.9317 25.569 19.776
Whole set Hydrocarbon compounds 92 0.9218 (0.9318) 25.835 (24.175) 22.867 (22.132)
 Heteroatoms compounds 108 0.9114 25.428 20.372

a N: number of compounds. b R2: squared coefficient of correlation. c RMSE: root mean square error. d MAE: mean absolute error. Values in
parentheses are statistic values of the prediction set without butane. 

be of a significant utility in describing branching differences in
the molecules. Moreover, density was shown to be related to
unsaturation and aromaticity of the chemical structures, and
the radius of gyration related to conformation. Jurs-FNSA-2
was useful in noting the polar interaction by distribution of
negative charge. Ial and Ike encoded ketones or aldehydes from
the data set. The model used here employs only descriptors
calculated from chemical structure, and this approach is applic-
able in principle to organic compounds. But to understand
more clearly how the radical stability depends on the molecule
structure, we need supplementary descriptors based molecular
orbital theory which will be considered in further studies.
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